Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Pan-Ming Jian, ${ }^{\text {a }}$ Yi-Zhi Li, ${ }^{\text {b }}$
Xiao-Li Wu, ${ }^{\text {a }}$ Yong-Xiang Ma, ${ }^{\text {a }}$ *
Da-Hua Pan ${ }^{\text {a }}$ and Bao-Hua Chen ${ }^{\text {a }}$
${ }^{\text {a }}$ National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\mathbf{b}}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.092$
Data-to-parameter ratio $=11.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(5-Chloro-2-hydroxyphenyl)(phenyl)-methyl]-2-(2-pyridyl)-1H-benzimidazole

The title compound, $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$, results from the intramolecular reaction of a difunctional Schiff base in the presence of acid as a catalyst. There is a chiral C atom in the molecule, but the crystal structure is a racemic mixture. There is one strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and three weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ interactions (two intra- and one intermolecular), leading to the formation of a helical chain of molecules.

Comment

The preparation of benzimidazoles has attracted some attention due to their varied physiological characteristics, such as anticancer agents, fungicides, antichagasic drugs, inhibitors, and plant-growth regulators (Zhou \& Hassner, 2001; Matsuno et al., 2000; Kucukbay et al., 2001; Purygin et al., 2000; Bag et al., 1996).

(I)

In general, benzimidazole derivatives are obtained by the reaction of an o-phenylenediamine with a carboxylic acid, ester, amide, nitrile etc., or by the palladium-catalysed carbonylation, coupling and cyclization of haloaromatics and o-phenylenediamines. Recently, Alajarin et al. (1999) described a $[4+2]$ intramolecular cycloaddition of ketimines with imines to form benzimidazo[$1,2-b$]isoquinolines, but it is a tedious procedure requiring expensive reagents. This paper reports a novel method for the synthesis of 1,2-benzimidazoles in good yields, by hydrogen-transfer cyclization between azomethine groups in the presence of acidic catalysts under mild conditions.

There is a chiral C atom in the molecule of the title compound, (II); however, it crystallizes as a racemic mixture in the centrosymmetric space group $P 21 / c$. The dihedral angle between the benzimidazole ring system and the pyridyl ring is 24.29 (8) ${ }^{\circ}$. The bond angles H13-C13-N2, H13-C13-C20 and $\mathrm{H} 13-\mathrm{C} 13-\mathrm{C} 14$ are 103.2 (8), 110.0 (8) and 105.7 (8) ${ }^{\circ}$, respectively. There is one strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and three weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (two intra- and one intermolecular), leading to the formation of a helical chain of molecules (Fig. 3).

Experimental

The title compound, (II), was prepared as follows: in the presence of $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$, an intramolecular hydrogen-transfer cyclization of 1- N -(phenyl-5-chloro-2-hydroxylphenyl)methylene-2- N -(pyridin-2-

Received 14 April 2003

Accepted 6 May 2003
Online 16 May 2003

Figure 1

The molecular structure of title compound, with ellipsoids drawn at the 50% probability level.

Figure 2
The packing of the title compound, viewed down the b axis.

Figure 3
The crystal packing, showing the intermolecular interactions leading to the formation of two helical chains.
yl)methylene-1,2-phenylenedimine was carried out between the two $\mathrm{C}=\mathrm{N}$ bonds of the asymmetrical difunctional Schiff base (I) to give cyclozation product (II). The hydrogen on the C atom of the aldimine transferred to the C atom of the ketoimine and formed a chiral center. The specific rotation of the product is zero, as it is racemic. A single crystal of the title compound was obtained by slow diffusion (1:1 MeOH-MeCN) over a period of one month.

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$
$M_{r}=411.87$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=13.515$ (2) A
$b=9.597$ (2) A
$c=16.875$ (2) \AA
$\beta=110.01$ (1) ${ }^{\circ}$
$V=2056.6(6) \AA^{3}$
$Z=4$
$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.1-23.2^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Bruker $P 4$ diffractometer
$R_{\text {int }}=0.045$
ω scans
Absorption correction: ψ scan
(XPREP in SHELXTL; Bruker, 2000)
$T_{\text {min }}=0.95, T_{\text {max }}=0.96$
10228 measured reflections
3982 independent reflections
3129 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.092$
$S=1.01$
3982 reflections
343 parameters
$\theta_{\text {max }}=26.0^{\circ}$
$h=-16 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=-19 \rightarrow 19$
3 standard reflections every 97 reflections intensity decay: none

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 2-\mathrm{C} 13$	$1.4802(16)$	$\mathrm{C} 20-\mathrm{C} 13$	$1.5251(18)$
$\mathrm{C} 14-\mathrm{C} 13$	$1.5109(19)$	$\mathrm{C} 13-\mathrm{H} 13$	$0.952(13)$
$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 14$	$112.56(11)$	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{H} 13$	$103.2(8)$
$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 20$	$110.27(10)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	$105.7(8)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 20$	$114.47(11)$	$\mathrm{C} 20-\mathrm{C} 13-\mathrm{H} 13$	$110.0(8)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1^{\prime} \cdots \mathrm{N} 1^{\mathrm{i}}$	$0.99(2)$	$1.77(2)$	$2.7520(16)$	$174.8(17)$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 3$	$0.952(13)$	$2.317(13)$	$2.9422(19)$	$122.6(9)$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 2$	$1.005(15)$	$2.513(15)$	$2.8643(19)$	$100.0(10)$
${\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{~N} 1^{\mathrm{ii}}}^{2}$	$0.977(19)$	$2.568(19)$	$3.464(2)$	$152.5(14)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $x, 1+y, z$.

All H atoms were found in difference maps and refined isotropically. $\mathrm{C}-\mathrm{H}$ bond lengths are in the range 0.952 (13) -1.058 (15) \AA. The $\mathrm{O}-\mathrm{H}$ bond length is 0.99 (2) A .

Data collection: XSCANS (Bruker, 2000); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation (QT program) of the PRC and the Natural Science Foundation of Gansu Province of China (YS991-A25-001).

organic papers

References

Alajarin, M., Vidal, A. Tovar, F. \& Conesa, C. (1999). Tetrahedron Lett. 40, 6127-6130.
Bag, S. K., Chakraborty, S. B. \& Chaudhuri, S. R. (1996). J. Ind. Chem. Soc. 73, 113-118.
Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Kucukbay, H., Durmaz, R., Guven, M. \& Gunal, S. (2001). Arznein. Forsch. 51, 420-424.
Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S., Yoshioka, K., Sakato, M. \& Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.
Purygin, P. P., Kuz'mina, V. E., Sergeeva, L. I., Pan' kov, S. V., Belyakova, N. A. \& Zarubin, Yu. P. (2000). Pharm. Chem. J. 34, 53-55.
Zhou, C. \& Hassner, A. (2001). Carbohydr. Res. 333, 313-326.

